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We consider polling systems with multiple coupled servers. We explore the class of
systems that allow an exact analysis. For these systems we present distributional
results for the waiting time, the marginal queue length, and the joint queue length
at polling epochs. The class in question includes several single-queue systems with a
varying number of servers, two-queue two-server systems with exhaustive service
and exponential service times, as well as infinite-server systems with an arbitrary
number of queues, exhaustive or gated service, and deterministic service times.
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1. Introduction

In this paper we consider polling systems with multiple coupled servers. A
multiple-server polling system is a multiple-queue system attended by multiple
servers in a cyclic manner. So far, there are hardly any exact results known for these
systems, apart from some mean-value results for global performance measures like
cycle times. In this paper we explore the class of systems that allow an exact analysis.
For these systems we present distributional results for the waiting time, the marginal
queue length, and the joint queue length at polling epochs.

An example of a multiple-server polling system is a distributed system, con-
sisting of a number of computers, interconnected by a communication medium, that
cooperate as follows in sharing the total load of the system, cf. [22]. The jobs enter-
ing the “front-end” systems (corresponding to the queues) are picked up in batches
by the “back-end” systems (corresponding to the servers) according to some cyclic
schedule. As soon as a batch is served, the back-end system picks up the jobs from
the next front-end system.

Examples also arise in communication networks, like the underlying com-
munication medium in the above-mentioned distributed system. Consider, €.g., 2
local area network (LAN), consisting of a number of stations, interconnected by
a transmission ring. There are various protocols known for the medium access con-
trol in a LAN with a ring architecture. One variant is the slotted ring, i.e., the ring s
subdivided into time slots of the size of a single packet, circulating at constant
speed. Occupying a slot corresponds to utilizing a server. Another medium access
variant that may lead to multiple-server polling is the token ring, i.e., there are
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multiple rings, each with a token circulating on it, representing the right of transmis-
sion on that particular ring. Holding a token corresponds to utilizing a server.

Multiple-server polling systems have received remarkably little attention in
the vast literature on polling systems (see Takagi [26] for a comprehensive survey).
One of the first studies is Morris and Wang [22] in which the servers are assumed to
be independent, i.e., to visit the queues independently of each other, each server
according to its own cyclic schedule. They obtain the mean cycle time of each server
as well as the mean intervisit time to a queue, and derive approximate expressions
for the mean sojourn time for both a gated-type and a limited-type service discipline.
A very interesting phenomenon observed by Morris and Wang is the tendency for
the servers to cluster if they follow identical routes, especially in heavy traffic. A
trailing server will tend to move fast, as it only encounters recently served queues,
whereas a leading server will tend to be slowed down by queues that have not
been served for a while, so that the servers tend to form bunches while constantly
leapfrogging over one another.

Browne and Weiss [11] is one of the few studies in which the servers are
assumed to be coupled, i.e., to visit the queues together. They obtain index rules
for the minimization of the mean length of individual cycles for both the exhaustive
and the gated service discipline. Browne et al. [9] derive the mean waiting time for a
completely symmetric two-queue system with an infinite number of coupled servers
and deterministic service times. Browne and Kella [10] obtain the busy-period distri-
bution for a two-queue system with an infinite number of coupled servers, exhaus-
tive service, and deterministic service times at one queue and general service times at
the other.

Levy and Yechiali [19] and Kao and Narayanan [17] study the joint distribu-
tion of the queue length and the number of busy servers for a Markovian multiple-
server queue, where the servers individually go on vacation when there are no
waiting customers left. Mitrany and Avi-Itzhak [21] and Neuts and Lucantoni
[23] analyze the joint distribution of the queue length and the number of busy
servers for a Markovian multiple-server queue where servers break down at expo-
nential intervals and then get repaired. In refs. [6, 12, 16, 18, 24, 29, 30] mean
response time approximations are developed to analyze the performance of LAN’s
with multiple-token rings. Mean response time approximation oriented to LAN’s
with a multiple-slotted ring are contained in refs. [5, 6, 20, 29, 31]. Ajmone Marsan
et al. [2—4] derive the mean cycle time and bounds for the mean waiting times in
symmetric systems for the exhaustive, gated, and 1-limited service discipline. In
[1] they illustrate how PETRI-net techniques may be used to study Markovian
multiple-server polling systems.

The above-mentioned studies unanimously point out that multiple-server
polling systems, combining the complexity of single-server polling systems and
multiple-server systems, are extraordinarily hard to analyze. In fact, almost none
of the studies (except [9, 10] and the single-queue studies [17, 19, 21, 23]) presents
any exact results, apart from some mean-value results for global performance
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measures like cycle times. Indeed, in a Markov description the state of the system
has to be represented by a vector containing the number of customers at each of
the queues, the position of each of the servers, as well as the remaining service or
switch-over time for each of the servers. In general, the state evolution process is
prohibitively complex, involving an intractable infinite set of difference-differential
equations.

In the present paper we consider the case of coupled servers. We are mainly inter-
ested in exploring the class of systems that allow an exact analysis. For these systems we
present distributional results for the waiting time, the marginal queue length, and the
joint queue length at polling epochs. The motivation for considering the case of coupled
servers is threefold. First, the dependence in the position of the servers does not play any
complicating role then. Second, in some situations the servers may in fact happen to be
physically coupled. Third, the coupled-server case may also be relevant for the study
of the independent-server case. The tendency for the servers to cluster provides e.g. an
indication that they tend to behave as if they were coupled.

The remainder of the paper is organized as follows. In section 2 we consider a
single-queue multiple-server system with service interruptions, which is not only
interesting in its own right but also useful for the study of a multiple-server polling
system. In isolation, a particular queue in a polling system may be viewed as a single-
queue system with service interruptions, the intervisit periods constituting the service
interruptions. Results for single-queue systems with service interruptions may thus
be used to obtain results for the marginal distributions in polling systems. In section
3 we return to the multiple-server polling system. We relate the probability generat-
ing function (pgf) of the joint queue length at the beginning of a visit to the pgf of the
joint queue iength at the end of the previous visit. Next, we relate the pgf of the joint
queue length distribution at the end of a visit to the pgf of the joint queue length at
the beginning of a visit. Thus we obtain 2»n equations involving 2n pgf’s with » the
number of queues. In section 4 we identify some cases for which these pgf’s can actually
be solved from these equations. These cases include several single-queue systems with a
varying number of servers, two-queue two-server systems with exhaustive service and
exponential service times, as well as infinite-server systems with an arbitrary number
of queues, exhaustive or gated service, and deterministic service times. In section 5
we conclude with some remarks and suggestions for further research.

2.  An M/M/m queue with coupled servers and service interruptions

In the present section we consider an M /M /m queue with coupled servers
and service interruptions. The service interruptions are assumed to result from
some interfering process that from time to time keeps the servers from working,
even while there are customers present. Service preemption due to service interrup-
tions is allowed. The service interruptions may be interwoven with the arrival
and service processes in an arbitrarily complex manner, but may not anticipate
on the future arrival and service times of customers. In particular, the durations
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of successive service interruptions are allowed to be dependent. We abstract here
from what kind of interfering process causes the service interruptions. In the context
of polling models, a service interruption typically models the intervisit period. In the
setting of performability models, a service interruption usually represents a down-
period of the system. A period during which none of the servers is busy, because
of a service interruption or because there are no customers present, will be called
a non-serving interval. A period during which at least one of the servers is busy
will be called a serving interval.

Fuhrmann and Cooper [4] consider an M /G/1 queue with service interrup-
tions. Under rather mild assumptions they prove a decomposition property of the
queue length distribution. Using concepts from the theory of branching processes,
they show that the queue length distribution can be expressed as the convolution of
the distribution of the following two quantities:

(i)  the queue length at an arbitrary epoch in the “corresponding” M /G/1 queue
without service interruptions;

(i)  the queue length at an arbitrary epoch in a non-serving interval.

The “corresponding” M/G/1 queue without service interruptions is an ordinary
M /G/1 queue with similar traffic characteristics, of which the queue length distribu-
tion is simply known from the Pollaczek—Khintchine formula. To find the queue
length distribution at an arbitrary epoch, it thus suffices to find the queue length dis-
tribution in a non-serving interval, which is quite often relatively simple. By the
distributional form of Little’s law the queue length decomposition also translates
into a decomposition of the waiting time. Under somewhat milder assumptions
than Fuhrmann and Cooper, Boxma [7] proves a similar decomposition of the
amount of work in the system. Browne and Kella [10] analyze the queue length dis-
tribution in an M/G/oco queue with vacations. They observe that for deterministic
service times a Fuhrmann and Cooper-like decomposition property holds, but not
for exponential service times.

We now analyze the queue length distribution in the M /M /m queue under
consideration. Although for m = 1 the amount of work is somewhat easier to study
than the queue length, for m > 1 we need to focus on the queue length, as the
amount of work then no longer completely determines the number of busy servers.
We make the following assumptions.

1) During a serving interval there are no servers idling while there are customers
waiting, i.e., if there are / customers present during a serving interval then
there are min(/, m) servers working, just like in an ordinary M /M /m queue.

(i)  The order in which customers enter service is independent of their service
times.

Under the above assumptions we will show that the queue length distribution can be
expressed into the distribution of (conceptually) the same two quantities as in the
M/G/1 queue with service interruptions, but not in the same simple convolution
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form. However, to find the queue length distribution at an arbitrary epoch, it still
suffices to find the queue length distribution in a non-serving interval. Under
some additional assumptions we will also show how the queue length decomposi-
tion translates into a decomposition of the waiting time.

We first introduce some notation. Let A be the arrival rate and let 1 be the
service rate. Define p = A\/u. Denote by N and N4 the total number of customers
present (including customers in service) at, respectively, an arbitrary epoch
and an arbitrary epoch in a non-serving interval. Denote by N,/ ,/ /m the number
of customers at an arbitrary epoch in the “corresponding” M/ Af /m queue, given
that the number of customers is at least /, />0. The “corresponding” M /M /m
queue is an ordinary M /M /m queue with arrival rate A and service rate p.
For/<m—1

k
L ISksm-—1
Pe{NY =k} ={ K ’ 2.1
r{ M/M/m = = 5 o\ ke (2.1)
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fY m|<m) ’ =m,
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Tt(lg following lemma expresses the distribution of N into the distribution of N4 and
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Proof

Define a vacation customer to be a customer arriving in a non-serving inter-
val. Consider now a vacation customer C arriving at some time u. Suppose that C
sees / customers upon arrival; so the queue length just after u equals / + 1, />0. Let
T be the first epoch in a serving interval after u at which the queue length reaches the
level / + 1 again. Let U be the first epoch after u at which the queue length drops to
the level /. Suppose that the interval [T, U] contains K distinct non-serving intervals
starting at the consecutive epochs Uy, ..., Ug,K>0. Let N, be the queue length just
after the epoch Uy. Let T be the first epoch in a serving interval after U, at which
the queue length reaches the level N, again. The interval [T, U], exclusive of the
intervals [U;, T], ..., [Ug, Tk], is called a 1-busy period at level /. Note that we
have thus established a 1-1 correspondence between 1-busy periods at level / and
vacation customers that see / customers upon arrival. (For m = 1 one can establish
the 1-1 correspondence in an elegant way by choosing the order of service to be non-
preemptive LCFS, cf. Fuhrmann and Cooper [14]; the vacation customer is then the
“ancestor” of the customers served in the 1-busy period. For m > 1 one cannot
establish the 1-1 correspondence in such an elegant way, as the customers then do
not necessarily leave in order of service.) The notion of a 1-busy period is illustrated
in fig. 1, with N(z) denoting the queue length at time 7. Parallel to the time axis the
non-serving intervals are indicated by dotted lines. The serving intervals constitut-
ing a 1-busy period at level / = 1 are indicated by bold lines.

Consider now an arbitrary tagged customer as it departs from the system.

Denote by N, the number of customers that the tagged customer leaves
behind. By virtue of the PASTA property and an up- and downcrossing argument,
N) has the same distribution as N. Denote by L the level of the 1-busy period in
which the tagged customer is served. (Note here that the 1-busy periods together
constitute a partitioning of the serving intervals.)

o0
E(N) =E(°) =Y E("|Lp = )Pr{L, = I}. (2.7)

1=0
Define a 1-busy period at level / in the corresponding M /M /m queue to be a period
ranging from an epoch when the queue length jumps to the level / + 1 to an epoch
when the queue length drops to the level /. Because of the memoryless property of
the exponential service time distribution, a 1-busy period at level / in the queue with

N(1)

Fig. 1. A 1-busy period at level / = 1.



S.C. Borst|Polling systems with multiple coupled servers 375

service interruptions is stochastically indistinguishable from a 1-busy period at level
I in the corresponding M /M /m queue. So, given that L, = I, N, has the same dis-
tribution as the number of customers that an arbitrary customer leaves behind as it
departs from the corresponding M /M /m queue in a 1-busy period at level /. By virtue
of the (conditional) PASTA property and an up- and downcrossing argument, this
h in th distribution as N i
number has again the same distribution as N/, ., the queue length at an arbitrary
epoch in the corresponding M /M /m queue given that the queue length is at least /.

E(N°[Lp = 1) = E(wimrn). (2.8)

Denote by L the level of an arbitrary 1-busy period. Remember that we have estab-
lished a 1-1 correspondence between 1-busy periods at level / and vacation customers
that see / customers upon arrival. So L has the same distribution as the number
of customers seen by an arbitrary arriving vacation customer. Because of the
PASTA property, this number has again the same distribution as N 4. Denote by
M, the number of customers served in a 1-busy period at level /. Then

ZPr{L k}EM, ZPr{NA = k}EM,

Ina 1-busy period at level /, exactly 1 customer is served that leaves behind / custom-
ers as it departs from the system. So EM, equals the reciprocal of the probability
that an arbitrary customer leaves behind / customers as it departs from the system
in a 1-busy period at level /:

M, = ! . (2.10)

Pr{NM/M/m =1}
Substituting (2.8)—(2.10) into (2.7) completes the proof. O
Substituting (2.1)-(2.5) into (2.6) yields

[ZPr{NA =[}— [E %-l—z’"%m_njpz]

m _ 2.11
m— 1—;1PT{NA l}z ( :
with
-1
l m lpk pm m m o=
— -7 T - P N =l .
[gpf{l‘h I} /L;k. mlm—p +m—p,§n:_1 "=t
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Remark 2.1

For Pr{N, =0} =1, ie., in a non-serving interval there are never any
customers present, (2.6), (2.11) and (2.12) reduce to

m

E(2N) = E(Numom) 2[25_ /_’;_ m} [Zz m

m'm pz|’

which is of course just the queue length distribution at an arbitrary epoch in the
corresponding M /M /m queue without service interruptions.

Remark 2.2
Form =1, (2.11) and (2.12) reduce to

E(N) = E(2"),

l—pz

which is the Fuhrmann—~Cooper decomposition for an M /M /1 queue with service
interruptions.
For m = o0, (2.11) and (2.12) reduce to

E(zN) = [}oipr{NA =] l—li }
1=0 k=l

Recognising that (11/p') S50, 2 (0" /k") = 2/ + p [y ule(z"“)”du,

1 -1 z
E(zN) = |i1 +p / E(uNA)e(l““)pdu} [E(ZN“) +p / E(uNA)e(z_“)”du},

u=0 =0

??“‘b

1=0

k
Z Pr{N, =1 } k,}

which may be used to recover a result first obtained in Browne and Kella [10].

The above results imply that to find the distribution of N, it suffices to find the
distribution of N,. From a methodological point of view, however, it is more
natural to analyze the queue length at either the beginning or the end of non-serving
intervals than to study N,. Therefore we now relate the dlstrlbutlon of N4 to the
queue length distribution at such embedded epochs. Denote by N and N %) the
queue length at, respectively, the beginning and the end of the k th non-serving
interval. Denote by N, N a pair of stochastlc variables with as joint distribution
the stationary joint distribution of Ng , N( . The following equation (see Wolff [28]
Section 10.5 for a similar relationship) relates the distribution of N4 to the distri-
bution of N and N¢.

Pr{N, =} = Pr{Nz<!/} — Pr{Ncsl}.

(2.13)
EN¢ — ENg
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Written in terms of pgf’s

E(N#) — E(2N°)

Ny _
B = o NN (2.14)

We now show how the queue length decomposition translates into a decom-

position of the waiting time. In addition to (i) and (ii) we make the following
assumptions.

(iii) Customers enter service in order of arrival.

(iv) The waiting time of customers is independent of arrivals after their own
arrival.

Denote by W and R the waiting and the sojourn time, respectively, of an arbitrary
customer. Denote by L the number of waiting customers at an arbitrary epoch. The
familiar relationship E(z") = E(e™*1?R) does nor hold here, as customers do not
necessarily leave in order of arrival. However, what does hold under the assump-
tions (iii) and (iv) is the relationship E(z%) = E(e"\(l‘z)w). What thus remains to
be done, is to relate the distribution of L to the distribution of N.

LEMMA 2.2

m—1
E(z%) = E(ZN) + (1 — py) ([z-m —1EE"e) + ) (1 = Pr{Ng = k}), (2.15)

k=0
with
Pr{N; = k} = LN=4 - _p;fr{N”‘ =k} (2.16)
N,
E(ZNE) — E(Z )lw-p;AE(Z ) (217)
=1 |

ba [;Pr{N%M/m=l}} (218)

Proof

Denote by Ny the number of customers present at an arbitrary epoch ig a
serving interval. Denote by p,4 the fraction of time occupied by non-serving
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intervals. Then

E(zY) = E(z2M)ps + E(2)(1 = o), (2.19)

E(M) = E(z™)p  + E(N"1) (1= p), (2.20)

with [x]* = max(0, x).
Comparing (2.19), (2.20), using that

m—1
E(z[NE_m]+) = z7"E(zNF) + Z[l — Z"Pr{Ng = k}
k=0

yields (2.15).

Because of the PASTA property, p4 equals the probability that an arbitrary
customer arrives in a non-serving interval. In the proof of lemma 2.1 we introduced
the notion of a 1-busy period. We showed thatin a 1-busy period exactly 1 customer
is served that arrived in a non-serving interval. Denote by M the number of custom-
ers served in a 1-busy period. Then

1
PA= BN (2.21)
From the proof of lemma 2.1
EM=Y" Pr{(}jf‘ =0 (2.22)
1=0 Pr{NM/M/m =1}
Substituting (2.22) into (2.21) completes the proof. O

3. The joint queue length distribution I

We now return to the polling system with multiple coupled servers. We first
present a detailed model description. The model under consideration consists of »n
queues Qy,...,0,, each of infinite capacity, attended by m coupled servers. Cus-
tomers arrive at the queues according to independent Poisson processes. Customers
arriving at Q; will also be referred to as type-i customers, i = 1, ..., n. Denote by \;
the arrival rate at Q;,i=1,...,n. The total arrival rate is X := > i A;. Type-i
customers require service times B;, having distribution function B;(:) with
Laplace-Stieltjes Transform (LST) §;(-) and first moment 5;,i = 1,...,n. Define
the traffic intensity at Q; as p,:= \;,8;,i = 1,...,n. The total traffic intensity is
p:= Y i1 pi- The server pool visits the queues in strictly cyclic order Qy,..., Q,.



S.C. Borst/Polling systems with multiple coupled servers 379

Moving from Q; to Q. , the server pool experiences a non-zero switch-over time S;,
having distribution function S;(-) with LST o,(-) and first moment, s;,i = 1,...,n.
Here (as well as in the sequel) n + 1 is to be understood as 1. Successive service times
as well as successive switch-over times are assumed to be independent. Also the
arrival process, the service process, and the switch-over process are assumed to be
mutually independent. As soon as the servers arrive at Q,, they start serving type-
i customers, as prescribed by the service discipline. For now we do not specify the
service discipline any further. In fact, what we are mainly interested in, is exploring
the class of service disciplines that allow an exact analysis. As soon as the servers
have finished serving type-i customers, as prescribed by the service discipline,
they move to Q;, .

In the present section we relate the pgf of the joint queue length distribution
at the beginning of a visit to Q; to the pgf of the joint queue length distribution at the
end of a visit to Q;_,. Next, we also relate the pgf of the joint queue length distribu-
tion at the end of a visit to Q; to the pgf of the joint queue length distribution at the
beginning of a visit to Q;. Thus we obtain 2xn equations involving 2x pgf’s. In the next
section we identify some cases in which these pgf’s can actually be solved from these
equations.

We first introduce some notation. Denote by (X;i,...,X;,) and (Y;1,..., Y:)
the joint queue length vector at, respectively, the beginning and the end of a visit to
Q;,i=1,...,n. Define

Fi(z) =E(z}"...5m),

Gi(z) = E(z{"...2%"),

forz=(zy,...,2,),|zs| <V h=1,...ni=1,... 0.

We first relate F;(-) to G;_;(-), and subsequently G;(-) to Fi(-). Thus we obtain
an expression for G;(-) in terms of G,_;(-), which recursively yields a functional
equation for G;(-).

Define
di(z) = o; (Zw —m) (3.1)
h=1
forz=(zy,...,z,),|zs| <Lh=1,...,ni=1,...,n
Then

Fi(z) = Gi_y(2)d;_ (2), (3:2)

where dy(+), Gy(-) are to be understood as d,(-), G,(-), respectively.
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We now relate G;(-) to Fi(-).

Gi(z) =i...iE(zf“ 2| (X, X)) = (i, 1)
=0  1,=0
'Pr{(Xila--->Xin) = (117"'7ln)}' (33)

Evidently, it is the service discipline at Q; that decides whether or not the right-hand
side of (3.3) can be expressed into F;(-). Fuhrmann [13] and Resing [25] consider a
class of service disciplines (in single-server systems) that satisfy the following
assumption.

ASSUMPTION 3.1
If there are /; customers present at Q; at the start of a visit, then during the
course of the visit each of these /; customers will effectively be replaced in an i.i.d.

manner by a random population consisting of K;; type-1 customers, ..., K,, type-n
. . . K, ;
customers having n-dimensional pgf 7;(z) = E(z, L)
Formally,

E(z}’” ...z,,Y""I(X“, X)) = (4 ...,ln)) = lel ~--Zii"1(77i(2))li2$111 . zf;' (3.4)

Substituting (3.4) into (3.3),
Gi(z) = Fi(zy, ... yZie 1y Mi(2)s Zigts -+ 5 Zn)- (3.5)

Using the theory of multi-type branching processes, both Fuhrmann and Resing
show that the class of service disciplines that satisfy assumption 3.1, like exhaustive
and gated, allows a relatively simple exact analysis, basically due to the relatively
simple form of (3.5). The results suggest that service disciplines that violate assump-
tion 3.1 defy an exact analysis, except for some special cases like two-queue cases
and completely symmetrical cases.

In multiple-server systems there are no non-trivial service disciplines that
satisfy assumption 3.1. However, some service disciplines do satisfy the following
somewhat milder assumption than assumption 3.1.

ASSUMPTION 3.2

If there are /; customers present at Q; at the start of a visit, then during the
course of the visit one of these /; customers will effectively be replaced by a random
population having pgf ngl)(z), while each of the other customers will effectively be
replaced in an i.i.d. manner by a random population having pgf 7;(z).

Formally,

E(z" oz |(Xery oo Xin) = (o, b)) = 20 i@ ()2 2 (3.6)

i i+1-
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with
L
() =1, =0, (37)

0 (2) =1 (@) ()", L > 0. (3.8)

Substituting (3.6), (3.7), (3.8) into (3.3),

7 (z)
Gy(2) =F(z, '~~’Zi—-1a77i(z)azi+lv~'wzn) .

ni(z)
(1)
i’ (z)
Fi "",i—vo')i 1y én —— . .
+ Fi(z1, 20,0020, 0, 2) [1 ) ] (3.9)
Define
ai(z) = (Zla SRR Zi—hni(z)a Ziglye-- )Zn)a (310)
bi(Z)=(Zl,...,Zi_l,O,ZH_l,...,Zn), (311)
)
i (2)
ci(z) = 3.12
(2) ) (3.12)
forz=(zy,...,2,),|zs|<L,h=1,...,ni=1,...,n
Then (3.9) may be written as
Gi(z) = Fi(ai(2))ei(z) + Fi(bi(2))[1 - ¢i(2)). (3.13)

In view of the results of Fuhrmann and Resing, one can in general not expect that
the class of service disciplines that satisfy assumption 3.2 but not assumption 3.1,
Le., with ¢;(z) # 1, allows an exact analysis, except possibly for some special cases.
In the next section we will identify some of those cases.

We now describe some multiple-server systems with service disciplines that
satisfy assumption 3.2. Assumption 3.2 says that during the course of a visit to
Q; one of the customers initially present gets replaced by a different population
than all the others. This suggests that either only one of the customers initially present
at Q; gets served or that all of them get served but that one of them keeps the servers
busy for a different time than all the others. Keeping this in mind, we consider a
class of service disciplines that are parametrized by two vectors (py,...,p,) and
(q1,--.,q,) with the following interpretation. If there are any customers present
at Q; at the start of a visit, then one of them is always served, while the others
are served with probability ¢g;. Customers arriving at Q; during the course of a visit
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are served with probability p;. The case g¢; = 0 contains both the semi-exhaustive
service discipline (p; = 1) and the 1-limited service discipline (p; = 0). The case
g; = 1 includes both the exhaustive service discipline (p; = 1) and the gated service
discipline (p; = 0).

Denote k; = A\jp;. Let T( ) be the length of a busy period starting with &
customers present in an ordmary M/G/m queue with arrival rate ; and service
time distribution B;(-). Let 7" (w) = E(e=~T") for Rew>0.

Define

(2) =Y Ml = 2z) + N(1 = pi)(1 - z)
h#i

forz=(z1,...,za)sza|<Lh=1,...,ni=1,... %
For the above-defined class of service disciplines,

nzy=1, =0, (3.14)

I
, - -1 — k.
6= () )T @ L0 (319

with the interpretation of 77,( (z) asin (3.7), (3.8). For ¢; = 0, (3.14), (3.15) satisfy
(3.7), (3.8) in assumption 3.2 with n;(z) = z,,n,(l)( )= ’rl(l)(a( ). If Tk)(') is of
the form

7 (w) = @) m) T, k>0,

for some LST 7;(-), then ﬂ3 14), (3.15) satisfy (3.7), (3.8) also for ¢; > 0 with n;(z) =
gimi(ei(2)) + U~%MW,U 7 (ay(2)).

Two examples where 7, (-) is of the above form are (i) the case of m =2
servers and exponential service times (which is one of the examples in Browne
and Weiss [11]), and (ii) the case of m = oo servers and deterministic service times
(which is one of the examples in Browne et al. [9] and Browne and Kella [10]).

4. The joint queue length distribution II

In the previous section we obtained under assumption 3.2 a set of 2n egs.
(3.2), (3.13) involving the 2n pgf’s Fi(z),G;(z),i = 1,...,n. In the present section
we identify some cases in which these pgf’s can actually be solved from these
equations. Obviously, it suffices to find either Fj(z) or G,(z) for an arbitrary i, as
the remaining F;(z), G;(z),i = 1,...,n, can then easily be found from (3.2), (3.13).
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Substituting (3.2) into (3.13) yields

Gi(z) = Gi_y(ai(2))di1(ai(2))ci(z) + Gio1(bi(2))di1 (bi(2))[1 = ¢i(2)], (4.1)

where dy(-), Go(-) are to be understood as d,(-), G,(-) respectively.
Applying (4.1) n times we obtain a functional equation for G;(-).
For n = 1 we find, using the definitions (3.1), (3.10), (3.11), (3.12),

6(2) = Gl — 1) = CL 4 G0)o() {‘ i "M -

Here (as well as in the sequel) the redundant indices are omitted.
For n =2, we find

Gi(2) = Gilai-1(ai(2)))di-1 (-1 (a(2))) i1 (ai(2)) di(ai(z2) ) ei(2)

+ Gi(bi-1(ai(2)))dim1 (bim1 (@:(2))[1 = iy (ai(2))]di(as(2))ei(2)
+ Gia;-1(6i(2)))diz1 (ai1 (bi(2))) ei1 (bi(2))di(bi(2))[1 — ¢ Z)]
+ Gi(bi—1 (6:(2))) i1 (Bim1 (bi(2)))[1 = 121 (0:(2))]di(bi(2))[1 — ¢i(2)].

Using the definitions (3.1), (3.10), (3.11), (3.12),

G\ (z1,22) = Gi(m(2), m(m(2), 22)) o2 {v(m (2), ma(mi (2), 22)) o {v(mi (2), 22)}

W (2 )
Xnéz(:xé){z )> il (< ))+G (m1(2), 0)rafy(m (2),0) Yo {4 (2), 22)}

y {1 o 2) za} e
n

2(Mi(2),22) | m(2)
+ G1(0,m2(0, 23))2{7(0,72(0,22)) }o1 {7(0, 2) }

(1
n, (0, 2,) 771 ( )
* m(0, 22) {1 miz)

(1)
7)2 (0 7) . (z)
[ ——=—=1 1 - , 43
{ m2(0,2;) 1(2) (4.3)
(similarly with the indices interchanged) with (z,z;) = A;(1 — z1) + A (1 — z,).
Remember that 7;(z) is an n-dimensional pgf so that |n;(z)|<1 for z = (zy,...,z,),
lzpl <1, h=1,... ni=1,...,n.

In general, we obtain a functional equation for G;(-) containing 2" arguments in
the right-hand side. So, in accordance with the results of Fuhrmann and Resing, in

+G1(0,0)02{(0,0) }o{~(0,22) }
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general the functional equation cannot be solved. In fact, solving the functional equa-
tion only stands a chance in cases where ‘enough’ of the 2" arguments in the right-hand
side reduce either to z or to a constant. We will now indicate some of those cases.

Case I. n =1 queue, n(z) =z

This covers the case ¢ = 0 described in the previous section, i.e., only one of
the customers present at the start of a visit is served, while customers arriving during
the course of a visit are served with probability p.

Rewriting (4.2),

G(2)[z = o(A(1 = 2))1"(2)] = G(0)a(N)[z — 1 (2)]. (4.4)
Letting z — 1 in (4.4),
I 1= (MY(1) = s
od)  1-m0y@)

with (VY (1) = (dn'V(z)/dz)|,—;. Apparently the stability condition is As+
(n™VY(1) < 1. Note that As+ (n1))'(1) is the mean increase in the queue length
between the start of two successive visits when the system is not empty, which
should indeed be less than 1 to ensure stability.

G(0) =

Case Il. n = 1 queue, n(z) # z

This covers the case g > 0 described in the previous section, i.e., one of the
customers present at the start of a visit is always served, the others are served with prob-
ability ¢, while customers arriving during the course of a visit are served with probabil-
ity p, moreover assuming that there are either two servers and exponential service times
or an infinite number of servers and deterministic service times. Writing e(z) = n(z),

f@) = oA(1=n@)n"M)/n(z),8(2) = oW1 =1V (2)/n(z)] in (4.2),
G(z) = G(e(2))f (2) + G(0)g(z). (4.5)
Define
) =z B =e V@) k=1,

for |z|< 1.
Iterating (4.5) K times,

K K k-1
6(z) = 6(*V(2) [[ /(¥ (2) + 60 Y_g(e® @) [[7(V (). 49
k=0 k=0 =0

The next lemma establishes the convergence of (4.6) for K — oo under the condition
/
n(l) <1
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LEMMA 4.1
If 7'(1) < 1 then
()  limg_.e®™(z) =1 for all z with |z|<1;
i) JIZf (e(k) (z)) converges for all z with |z|<1;
(i) 3208 (e™(2)) [Tizs £ (€“)(2)) converges for all z with || < 1.

Proof

Proof of i
Since e(z) = n(z) is a pgf,

1 —e(z)| <7/ ()1 - zl.
By induction,

11— e® ) <@ Q)1 -2, k>0. (4.7)

So limg_, o, eX™V(2) = 1.

Proof of ii
Accordmg to the theory of infinite products cf. Titchmarsh [27, p. 18],
1320/ (™ (2)) converges iff 332, [1 — £ (e®(2))] converges.
Let I'(z) be the straight contour in the complex plane from z to 1.
According to the theory of complex functions,

1=f@I=UW-fEl=| [ dfw)|<MEI-2, @8
with
M(z) = réxlg()z() dj;’iu) < 00,
as f(u) is continuously-differentiable on |u|< 1.
Using (4.7), (4.8),
[e 9] o M(Z)
;|l—f z)lskzzoM N —z] = n,(1)|1—2|<oo.

So TTof (e (z)) converges.
Proof of iii
Note that
k-1

ig W(2)) Hf /() <KZlg ®(z

k=0 I= k=0



386 S.C. Borst/Polling systems with multiple coupled servers

with

K = max
k>0

[/ @)

=0

As TI20f (% (2)) converges,

k—1
| I AGE)

=0

max
k=0

So to prove that 3220 g (e (2)) TTiZs £ (€ (z)) converges, it suffices to prove that
Srog(e(z)) converges.

Let I‘( ) be the straight contour in the complex plane from z to 1.

Similarly to (4.8), noting that g(1) =0,

lg(2)| SN(2)|1 -], (4.9)
with
_ dg(u)
N(z) = Lfen[?.(x) ™ < 00,

as g(u) is also continuously-differentiable on |u|<1.
Using (4.7), (4.9),

Zig(ek) |<ZN |1—z| —ﬂz)———ll——z|<oo.
k=0 =0 (1)
So 3220 g(e®(2) TTiz £ £(e")(2)) converges. O

Apparently the stability condition is 7/(1) < 1. Note that /(1) is the mean number
of customers by which each of the customers present at the start of a visit, except
one, gets replaced in the course of the visit, which should indeed be less than 1 to
ensure stability. In the case of two servers and exponential service times,

ﬂu):(l—pm

<1
2—pp

iff p < 2, irrespective of p. In the case of an infinite number of servers and determi-
nistic service times, n'(1) = 0, also irrespective of p. If /(1) < 1 then, letting K — oo
in (4.6),

00 00 1
Giz) = [[/(€¥(2) + 6(0) > g(e¥(2) T/ (" (2)). (4.10)
k=0

k=0 1=0
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Putting z = 0 in (4.10),

ﬁf(e(k) 0))

G(0) = ——=—— :
1= g(e®©) [T/ (")
k=0 1=0

Case IlI. n = 2 queues, n;(z) = z;,i = 1,2

This covers the case g; = 0 described in the previous section, i.e., only one of
the customers present at the start of a visit to Q; is served, while customers arriving
at Q; during the course of a visit are served with probability p;, i = 1, 2.

Equation (4.3) reduces to

Gy(z1,22)[5122 — o1 (4(2)) o2 (1) (25" (2)]
= G1(21,0)01 (7(2)) o2 (V(z1, 00} (2) 22 — " (2)]
+ G1(0,22)01 (7(0, 22))02(7(0,22)) 21 — " (2)]n5 (0, 22)
+G1(0,0)0,(7(0, 22)) 02 ((0)) 21 — 15" (2)][z2 — 0" (0, z,)].
For p; = 0, i.e., 11"(2) = B:(v(2)),i = 1,2, the problem of solving the above func-

tional equation may be formulated as a boundary value problem, cf. Boxma and
Groenendijk [8].

Case IV. n = 2 queues, n;(z), 7751)(2) do not depend on z;,i = 1,2

This occurs in the case of two servers, exponential service times, and
exhaustive service. If ,(z), ngl)(z) do not depend on z;,i = 1,2, then the complete
right-hand side of (4.3) does not depend on z;. In other words, G;(z) does not depend
on z;, reflecting that Q; is empty at the completion of a visit to Q; when p; = 1. So
eq. (4.3) may be replaced by

H\(z5) = Hi(e1(22))/1(22) + H(n2(0))g1(22) + H;(0)hy (22), (4.11)
with

e1(z2) = m(m(2),22);

D () 5) 1Dy
fi(e2) = o2 am @)l 2) 22 Do r ), 22)) 2 B EL R I,

(1) (1) ,
81(22) = 02{7(0,72(0,23)) }o1 {(0, 22)}%—2_(%?1;22)2 [1 B 777;1 ((z))];
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(1) ()
=0 z o z M (m(2),z2) | my (2)
hi(z2) = o2 {v(m(2),0)}or{v(m(2), 2)}[1 772(771(2),22)} m(z)

M0, z (m,
+ 0212(0,0)}1{(0,22)} [l - ",;z(iff’z;’] {1 I )];

Hi(z;) = Gi(z1,2,).

Define

)=y, ) =e (V) k=1,

for |y|<1.
Iterating (4.11) K times, writing z, =

K
Hy(y) = H (e () [TA

k=0

K k-1
+ Hi(m(0) Y &1 () [[A ()
=0

=0

K k-1
+H,(0) > (e?(») [TA (" (). (4.12)

k=0 =0

The next lemma establishes the convergence of (4.12) for K — oo under the
condition € (1) < 1.

LEMMA 4.2
If € (1) < 1 then
(1) limg_ eﬁ“‘)(y) = 1 for all y with |y|<1;
() TTefi(e(»)) converges for all y with [y <1;
(i)  Sog (e(,k () HH) ,(e1 (»)) converges for all y with |y|<1;

i) S2oh (eﬁk () ITizs £ (e l)( )) converges for all y with |y|<1.

Proof
Similar to the proof of lemma 4.1. O

Apparently the stability condition is e](1) < 1. Note that ¢}(1) is the mean
number of type-1 customers by which each of the type-1 customers present at the
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start of a cycle, except one, gets replaced during the course of the cycle. In the case of
two servers, exponential service times, and exhaustive service,

(1) =m{m) 2=p2-p 4-20+p1p; P

If €1(1) < 1 then, letting K — oo in (4.12),

Il
o
=
£

k=1
+ Hy (1(0 Zgl (k) ))Hfl(eﬁ”(y))

k=0 =0

o) k-1
+Hy(0)> " (el?(») T[4 ")) (4.13)

k=0 =0

Putting y = 0 and y = 7,(0) in (4.13), we obtain a pair of linear equations for the
unknown constants H;(0) and H{(n,(0)).

Case V.n = 2 queues, n;(z) = 1,i=1,2
This occurs in the case of an infinite number of servers, deterministic service
times, and all the customers present at the start of a visit being served, while custo-

mers arriving at Q; during the course of a visit are served with probability
pii=1,2.
Equation (4.3) reduces to

Gi(z1,22) = o1 (Mo (1 = 2))n} (1, 20){") (2)
+Gi(1,0)05 (M) o1 (M (1 — 2))[1 = 78 (1, 20) 1M (2)
+G1(0, )y (M) (A + M1 = 2))50 (0, 25)[1 = iV (2)]
+G1(0,0)02 (A + N)or (A + Aa(1 = 2))[1 = 740, 2))[1 — 0 (2)].
(4.14)

Putting z = (1,0), z = (0, 1), and z = (0,0) in (4.14), we obtain a set of three linear
equations for the unknown constants G(1,0), G,(0, 1), and G,(0,0).

Case VI. n = 2 queues, m,(z) = z|,m(z) = 1
This covers the case g; = 0, ¢, = 1 described in the previous section, i.e., one
of the customers present at the start of a visit to Q is served, customers arriving at
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Q, during the course of a visit are served with probability p,, all the customers
present at the start of a visit to Q, are served, customers arriving at Q, during
the course of a visit are served with probability p,, moreover assuming that there
are an infinite number of servers and deterministic service times at Q,.
Equation (4.3) reduces to
7 ()

Gi(21,22) = Gz, Dna(y(z1, D) (2 (2) A=

),
1 Gy(z1,0)05(1(z1, 0oy (Y1 — ) () D)

1

(1
+G1(0, )y (7(0, 1)), (7(0,22))m5” (0, 25) [1 - ﬂﬁ]

(1)
+G1(0,0)02((0,0))01 (4(0, 22))[1 = 15”(0, 2,)] [1 - ”l—f—l} (@13

Setting z; = 0 and z; = 1 in (4.15) we find expressions for G,(z;,0) and G,(z;,1)
containing the unknown constants Gy(0,0) and G,(0, 1). Putting z; = 0 in those
expressions we obtain a pair of linear equations for these constants.

Case VII. General n,n;(z) = 1,i=1,...,n
Similar to case V.

Case VIII. General n,ny(z) = zy,mi(z) = 1,i # 1
Similar to case VI.

5. Concluding remarks and suggestions for further research

So far, we focused on the joint queue length distribution at embedded epochs.
In section 3 we obtained under assumption 3.2 a set of 2n egs. (3.2), (3.13) for the
associated pgf’s Fi(z), G;(z), i=1,...,n. In section 4 we identified some cases in
which these pgf’s can actually be solved from these equations. These cases include
several single-queue systems with a varying number of servers, two-queue two-
server systems with exhaustive service and exponential service times, as well as
infinite-server systems with an arbitrary number of queues, exhaustive or gated
service, and deterministic service times.

To conclude, we now briefly discuss the derivation of the marginal queue
length distribution at an arbitrary epoch from the joint queue length distribution
at embedded epochs. Denote by N; the queue length at Q; at an arbitrary epoch.
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As stated in the introduction, in isolation a particular queue in a polling system may be
viewed as a single-queue system with service interruptions, the intervisit periods
constituting the service interruptions. In section 2 we showed how in such a system
with service interruptions and exponential service times, the queue length distribu-
tion at an arbitrary epoch may be expressed into the queue length distribution at the
beginning and the end of a service interruption. In case the assumptions of sec-
tion 2 are satisfied, one may thus obtain the marginal queue length distribution at Q;
from the queue length distribution at the beginning and the end of a visit to Q;,
given by E(ZX)=F(1,...,1,z1,...,1) and E(zY)=G(1,...,1,21,...,1),
respectively, with z as ith argument. Consider, e.g., the two-queue two-server system
with exhaustive service and exponential service times, for which we obtained F;(z)

and G;(z) in case IV of the previous section. For such a system, using lemma 2.1
and (2.14),

2 ; -
Ny _ Pi _ 2 » piz
) = |72 + 72 pelNa = 0)] [ B + 22 b = 03

with E(zN4) = (1 — E(z%))/((1 - 2)EX,;). In section 2 we also showed how subse-
quently the waiting-time distribution may be related to the marginal queue length
distribution by using lemma 2.2

In case the assumptions of section 2 are not satisfied, one may quite often still
obtain the marginal queue length distribution from the joint queue length distribu-
tion at the beginning and the end of a visit by developing ad hoc methods. We do
not, however, pursue the matter any further, leaving it as an interesting topic for
further research.
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